Compare commits
20 Commits
core-ros2-
...
arm-topic-
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
13419e97c9 | ||
|
|
51d0e747ad | ||
|
|
caa5a637bb | ||
|
|
213105a46b | ||
|
|
7ed2e15908 | ||
|
|
5f5f6e20ba | ||
|
|
8f9a2d566d | ||
|
|
073b9373bc | ||
|
|
5a4e9c8e53 | ||
|
|
292873a50a | ||
|
|
78fef25fdd | ||
|
|
cf4a4b1555 | ||
|
|
dbbbc28f95 | ||
|
|
e644a3cad5 | ||
|
|
bf42dbd5af | ||
|
|
b6d5b1e597 | ||
|
|
84d72e291f | ||
|
|
8250b91c57 | ||
|
|
ddfceb1b42 | ||
|
|
ad0266654b |
37
README.md
@@ -16,6 +16,9 @@ You will use these packages to launch all rover-side ROS2 nodes.
|
||||
- [Connecting the GuliKit Controller](#connecting-the-gulikit-controller)
|
||||
- [Common Problems/Toubleshooting](#common-problemstroubleshooting)
|
||||
- [Packages](#packages)
|
||||
- [Graphs](#graphs)
|
||||
- [Full System](#full-system)
|
||||
- [Individual Nodes](#individual-nodes)
|
||||
- [Maintainers](#maintainers)
|
||||
|
||||
## Software Prerequisites
|
||||
@@ -140,6 +143,40 @@ A: To find a microcontroller to talk to, Anchor sends a ping to every Serial por
|
||||
- [ros2\_interfaces\_pkg](./src/ros2_interfaces_pkg) - Contains custom message types for communication between basestation and the rover over ROS2. (being renamed to `astra_msgs`).
|
||||
- [servo\_arm\_twist\_pkg](./src/servo_arm_twist_pkg) - A temporary node to translate controller state from `ros2_joy` to `Twist` messages to control the Arm via IK.
|
||||
|
||||
## Graphs
|
||||
|
||||
### Full System
|
||||
|
||||
> **Anchor stand-alone** (`ros2 launch anchor_pkg rover.launch.py`)
|
||||
>
|
||||
> 
|
||||
|
||||
> **Anchor with [basestation-classic](https://github.com/SHC-ASTRA/basestation-classic)**
|
||||
>
|
||||
> 
|
||||
|
||||
> **Anchor with Headless** (`ros2 run headless_pkg headless_full`)
|
||||
>
|
||||
> 
|
||||
|
||||
### Individual Nodes
|
||||
|
||||
> **Anchor** (`ros2 run anchor_pkg anchor`)
|
||||
>
|
||||
> 
|
||||
|
||||
> **Core** (`ros2 run core_pkg core --ros-args -p launch_mode:=anchor`)
|
||||
>
|
||||
> 
|
||||
|
||||
> **Arm** (`ros2 run arm_pkg arm --ros-args -p launch_mode:=anchor`)
|
||||
>
|
||||
> 
|
||||
|
||||
> **Bio** (`ros2 run bio_pkg bio --ros-args -p launch_mode:=anchor`)
|
||||
>
|
||||
> 
|
||||
|
||||
## Maintainers
|
||||
|
||||
| Name | Email | Discord |
|
||||
|
||||
BIN
docs-resources/graph-anchor-anchor-standalone.png
Normal file
|
After Width: | Height: | Size: 110 KiB |
BIN
docs-resources/graph-anchor-arm-standalone.png
Normal file
|
After Width: | Height: | Size: 98 KiB |
BIN
docs-resources/graph-anchor-bio-standalone.png
Normal file
|
After Width: | Height: | Size: 36 KiB |
BIN
docs-resources/graph-anchor-core-standalone.png
Normal file
|
After Width: | Height: | Size: 119 KiB |
BIN
docs-resources/graph-anchor-standalone.png
Normal file
|
After Width: | Height: | Size: 395 KiB |
BIN
docs-resources/graph-anchor-w-basestation-classic.png
Normal file
|
After Width: | Height: | Size: 543 KiB |
BIN
docs-resources/graph-anchor-w-headless.png
Normal file
|
After Width: | Height: | Size: 439 KiB |
@@ -8,6 +8,7 @@ from launch.substitutions import (
|
||||
PathJoinSubstitution,
|
||||
)
|
||||
from launch_ros.actions import Node
|
||||
from launch.conditions import IfCondition
|
||||
|
||||
|
||||
# Prevent making __pycache__ directories
|
||||
@@ -50,6 +51,7 @@ def launch_setup(context, *args, **kwargs):
|
||||
executable="ptz", # change as needed
|
||||
name="ptz",
|
||||
output="both",
|
||||
condition=IfCondition(LaunchConfiguration("use_ptz", default="true")),
|
||||
# Currently don't shutdown all nodes if the PTZ node fails, as it is not critical
|
||||
# on_exit=Shutdown() # Uncomment if you want to shutdown on PTZ failure
|
||||
)
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
import rclpy
|
||||
from rclpy.node import Node
|
||||
from rclpy import qos
|
||||
import serial
|
||||
import sys
|
||||
import threading
|
||||
@@ -7,11 +8,10 @@ import glob
|
||||
import time
|
||||
import atexit
|
||||
import signal
|
||||
from std_msgs.msg import String
|
||||
from astra_msgs.msg import ArmManual
|
||||
from astra_msgs.msg import SocketFeedback
|
||||
from astra_msgs.msg import DigitFeedback
|
||||
from std_msgs.msg import String, Header
|
||||
from sensor_msgs.msg import JointState
|
||||
from astra_msgs.msg import SocketFeedback, DigitFeedback, ArmManual
|
||||
from astra_msgs.msg import ArmFeedback, VicCAN, RevMotorState
|
||||
import math
|
||||
|
||||
# control_qos = qos.QoSProfile(
|
||||
@@ -25,37 +25,68 @@ import math
|
||||
# liveliness_lease_duration=5000
|
||||
# )
|
||||
|
||||
serial_pub = None
|
||||
thread = None
|
||||
|
||||
# Used to verify the length of an incoming VicCAN feedback message
|
||||
# Key is VicCAN command_id, value is expected length of data list
|
||||
viccan_socket_msg_len_dict = {
|
||||
53: 4,
|
||||
54: 4,
|
||||
55: 4,
|
||||
58: 4,
|
||||
59: 4,
|
||||
}
|
||||
viccan_digit_msg_len_dict = {
|
||||
54: 4,
|
||||
55: 2,
|
||||
59: 2,
|
||||
}
|
||||
|
||||
class SerialRelay(Node):
|
||||
|
||||
class ArmNode(Node):
|
||||
def __init__(self):
|
||||
# Initialize node
|
||||
super().__init__("arm_node")
|
||||
|
||||
# Get launch mode parameter
|
||||
self.declare_parameter("launch_mode", "arm")
|
||||
self.launch_mode = self.get_parameter("launch_mode").value
|
||||
self.get_logger().info(f"arm launch_mode is: {self.launch_mode}")
|
||||
self.get_logger().info(f"arm launch_mode is: anchor") # Hey I like the output
|
||||
|
||||
# Create publishers
|
||||
self.debug_pub = self.create_publisher(String, "/arm/feedback/debug", 10)
|
||||
self.socket_pub = self.create_publisher(
|
||||
SocketFeedback, "/arm/feedback/socket", 10
|
||||
##################################################
|
||||
# Topics
|
||||
|
||||
# Anchor topics
|
||||
self.anchor_fromvic_sub_ = self.create_subscription(
|
||||
VicCAN, "/anchor/from_vic/arm", self.relay_fromvic, 20
|
||||
)
|
||||
self.digit_pub = self.create_publisher(DigitFeedback, "/arm/feedback/digit", 10)
|
||||
self.feedback_timer = self.create_timer(0.25, self.publish_feedback)
|
||||
|
||||
# Create subscribers
|
||||
self.man_sub = self.create_subscription(
|
||||
ArmManual, "/arm/control/manual", self.send_manual, 10
|
||||
self.anchor_tovic_pub_ = self.create_publisher(
|
||||
VicCAN, "/anchor/to_vic/relay", 20
|
||||
)
|
||||
|
||||
# New messages
|
||||
self.joint_state_pub = self.create_publisher(JointState, "joint_states", 10)
|
||||
self.joint_state = JointState()
|
||||
self.joint_state.name = [
|
||||
self.anchor_sub = self.create_subscription(
|
||||
String, "/anchor/arm/feedback", self.anchor_feedback, 10
|
||||
)
|
||||
self.anchor_pub = self.create_publisher(String, "/anchor/relay", 10)
|
||||
|
||||
# Control
|
||||
|
||||
# Manual: who tf knows. Maybe JointJog?
|
||||
# IK: /joint_commands is published by JointTrajectoryController via topic_based_control
|
||||
self.joint_command_sub_ = self.create_subscription(
|
||||
JointState, "/joint_commands", self.joint_command_callback, 1
|
||||
)
|
||||
|
||||
# Feedback
|
||||
|
||||
self.arm_feedback_pub_ = self.create_publisher(
|
||||
ArmFeedback,
|
||||
"/arm/feedback/new_feedback",
|
||||
qos_profile=qos.qos_profile_sensor_data,
|
||||
)
|
||||
self.arm_feedback_new = ArmFeedback()
|
||||
# IK: /joint_states is published from here to topic_based_control
|
||||
self.joint_state_pub_ = self.create_publisher(
|
||||
JointState, "joint_states", qos_profile=qos.qos_profile_sensor_data
|
||||
)
|
||||
self.saved_joint_state = JointState()
|
||||
self.saved_joint_state.name = [
|
||||
"Axis_0_Joint",
|
||||
"Axis_1_Joint",
|
||||
"Axis_2_Joint",
|
||||
@@ -64,117 +95,63 @@ class SerialRelay(Node):
|
||||
"Wrist-EF_Roll_Joint",
|
||||
"Gripper_Slider_Left",
|
||||
]
|
||||
self.joint_state.position = [0.0] * len(
|
||||
self.joint_state.name
|
||||
self.saved_joint_state.position = [0.0] * len(
|
||||
self.saved_joint_state.name
|
||||
) # Initialize with zeros
|
||||
self.saved_joint_state.velocity = [0.0] * len(
|
||||
self.saved_joint_state.name
|
||||
) # Initialize with zeros
|
||||
|
||||
self.joint_command_sub = self.create_subscription(
|
||||
JointState, "/joint_commands", self.joint_command_callback, 10
|
||||
# Old
|
||||
|
||||
# Create publishers
|
||||
self.socket_pub = self.create_publisher(
|
||||
SocketFeedback, "/arm/feedback/socket", 10
|
||||
)
|
||||
|
||||
# Topics used in anchor mode
|
||||
if self.launch_mode == "anchor":
|
||||
self.anchor_sub = self.create_subscription(
|
||||
String, "/anchor/arm/feedback", self.anchor_feedback, 10
|
||||
)
|
||||
self.anchor_pub = self.create_publisher(String, "/anchor/relay", 10)
|
||||
|
||||
self.arm_feedback = SocketFeedback()
|
||||
self.digit_pub = self.create_publisher(DigitFeedback, "/arm/feedback/digit", 10)
|
||||
self.digit_feedback = DigitFeedback()
|
||||
self.feedback_timer = self.create_timer(0.25, self.publish_feedback)
|
||||
|
||||
# Search for ports IF in 'arm' (standalone) and not 'anchor' mode
|
||||
if self.launch_mode == "arm":
|
||||
# Loop through all serial devices on the computer to check for the MCU
|
||||
self.port = None
|
||||
ports = SerialRelay.list_serial_ports()
|
||||
for _ in range(4):
|
||||
for port in ports:
|
||||
try:
|
||||
# connect and send a ping command
|
||||
ser = serial.Serial(port, 115200, timeout=1)
|
||||
# print(f"Checking port {port}...")
|
||||
ser.write(b"ping\n")
|
||||
response = ser.read_until("\n") # type: ignore
|
||||
|
||||
# if pong is in response, then we are talking with the MCU
|
||||
if b"pong" in response:
|
||||
self.port = port
|
||||
self.get_logger().info(f"Found MCU at {self.port}!")
|
||||
break
|
||||
except:
|
||||
pass
|
||||
if self.port is not None:
|
||||
break
|
||||
|
||||
if self.port is None:
|
||||
self.get_logger().info(
|
||||
"Unable to find MCU... please make sure it is connected."
|
||||
)
|
||||
time.sleep(1)
|
||||
sys.exit(1)
|
||||
|
||||
self.ser = serial.Serial(self.port, 115200)
|
||||
atexit.register(self.cleanup)
|
||||
# Create subscribers
|
||||
self.man_sub = self.create_subscription(
|
||||
ArmManual, "/arm/control/manual", self.send_manual, 10
|
||||
)
|
||||
|
||||
def run(self):
|
||||
global thread
|
||||
thread = threading.Thread(target=rclpy.spin, args=(self,), daemon=True)
|
||||
thread.start()
|
||||
|
||||
# if in arm mode, will need to read from the MCU
|
||||
|
||||
try:
|
||||
while rclpy.ok():
|
||||
if self.launch_mode == "arm":
|
||||
if self.ser.in_waiting:
|
||||
self.read_mcu()
|
||||
else:
|
||||
time.sleep(0.1)
|
||||
pass
|
||||
except KeyboardInterrupt:
|
||||
pass
|
||||
finally:
|
||||
self.cleanup()
|
||||
|
||||
# Currently will just spit out all values over the /arm/feedback/debug topic as strings
|
||||
def read_mcu(self):
|
||||
try:
|
||||
output = str(self.ser.readline(), "utf8")
|
||||
if output:
|
||||
# self.get_logger().info(f"[MCU] {output}")
|
||||
msg = String()
|
||||
msg.data = output
|
||||
self.debug_pub.publish(msg)
|
||||
except serial.SerialException:
|
||||
self.get_logger().info("SerialException caught... closing serial port.")
|
||||
if self.ser.is_open:
|
||||
self.ser.close()
|
||||
pass
|
||||
except TypeError as e:
|
||||
self.get_logger().info(f"TypeError: {e}")
|
||||
print("Closing serial port.")
|
||||
if self.ser.is_open:
|
||||
self.ser.close()
|
||||
pass
|
||||
except Exception as e:
|
||||
print(f"Exception: {e}")
|
||||
print("Closing serial port.")
|
||||
if self.ser.is_open:
|
||||
self.ser.close()
|
||||
pass
|
||||
|
||||
def joint_command_callback(self, msg: JointState):
|
||||
# Embedded takes deg*10, ROS2 uses Radians
|
||||
positions = [math.degrees(pos) * 10 for pos in msg.position]
|
||||
# Axis 2 & 3 URDF direction is inverted
|
||||
positions[2] = -positions[2]
|
||||
positions[3] = -positions[3]
|
||||
if len(msg.position) < 7 and len(msg.velocity) < 7:
|
||||
return # command needs either position or velocity for all 7 joints
|
||||
|
||||
# Set target angles for each arm axis for embedded IK PID to handle
|
||||
command = f"can_relay_tovic,arm,32,{positions[0]},{positions[1]},{positions[2]},{positions[3]}\n"
|
||||
# Wrist yaw and roll
|
||||
command += f"can_relay_tovic,digit,32,{positions[4]},{positions[5]}\n"
|
||||
# Gripper IK does not have adequate hardware yet
|
||||
self.send_cmd(command)
|
||||
# Assumed order: Axis0, Axis1, Axis2, Axis3, Wrist_Yaw, Wrist_Roll, Gripper
|
||||
# TODO: formalize joint names in URDF, refactor here to depend on joint names
|
||||
# Embedded takes deg*10, ROS2 uses Radians
|
||||
velocities = [
|
||||
math.degrees(vel) * 10 if abs(vel) > 0.05 else 0.0 for vel in msg.velocity
|
||||
]
|
||||
# Axis 2 & 3 URDF direction is inverted
|
||||
velocities[2] = -velocities[2]
|
||||
velocities[3] = -velocities[3]
|
||||
|
||||
# Axis 0-3
|
||||
arm_cmd = VicCAN(mcu_name="arm", command_id=43, data=velocities[0:3])
|
||||
arm_cmd.header = Header(stamp=self.get_clock().now().to_msg())
|
||||
# Wrist yaw and roll, gripper included for future use when have adequate hardware
|
||||
digit_cmd = VicCAN(mcu_name="digit", command_id=43, data=velocities[4:6])
|
||||
digit_cmd.header = Header(stamp=self.get_clock().now().to_msg())
|
||||
|
||||
self.anchor_tovic_pub_.publish(arm_cmd)
|
||||
self.anchor_tovic_pub_.publish(digit_cmd)
|
||||
|
||||
def send_manual(self, msg: ArmManual):
|
||||
axis0 = msg.axis0
|
||||
@@ -201,23 +178,14 @@ class SerialRelay(Node):
|
||||
return
|
||||
|
||||
def send_cmd(self, msg: str):
|
||||
if (
|
||||
self.launch_mode == "anchor"
|
||||
): # if in anchor mode, send to anchor node to relay
|
||||
output = String()
|
||||
output.data = msg
|
||||
self.anchor_pub.publish(output)
|
||||
elif self.launch_mode == "arm": # if in standalone mode, send to MCU directly
|
||||
self.get_logger().info(f"[Arm to MCU] {msg}")
|
||||
self.ser.write(bytes(msg, "utf8"))
|
||||
output = String(data=msg)
|
||||
self.anchor_pub.publish(output)
|
||||
|
||||
def anchor_feedback(self, msg: String):
|
||||
output = msg.data
|
||||
if output.startswith("can_relay_fromvic,arm,55"):
|
||||
# pass
|
||||
self.updateAngleFeedback(output)
|
||||
elif output.startswith("can_relay_fromvic,arm,54"):
|
||||
# pass
|
||||
self.updateBusVoltage(output)
|
||||
elif output.startswith("can_relay_fromvic,arm,53"):
|
||||
self.updateMotorFeedback(output)
|
||||
@@ -235,15 +203,132 @@ class SerialRelay(Node):
|
||||
if len(parts) >= 4:
|
||||
self.digit_feedback.wrist_angle = float(parts[3])
|
||||
# self.digit_feedback.wrist_roll = float(parts[4])
|
||||
self.joint_state.position[4] = math.radians(
|
||||
float(parts[4])
|
||||
) # Wrist roll
|
||||
self.joint_state.position[5] = math.radians(
|
||||
float(parts[3])
|
||||
) # Wrist yaw
|
||||
else:
|
||||
return
|
||||
|
||||
def relay_fromvic(self, msg: VicCAN):
|
||||
# Code for socket and digit are broken out for cleaner code
|
||||
if msg.mcu_name == "arm":
|
||||
self.process_fromvic_arm(msg)
|
||||
elif msg.mcu_name == "digit":
|
||||
self.process_fromvic_digit(msg)
|
||||
|
||||
def process_fromvic_arm(self, msg: VicCAN):
|
||||
if msg.mcu_name != "arm":
|
||||
return
|
||||
|
||||
# Check message len to prevent crashing on bad data
|
||||
if msg.command_id in viccan_socket_msg_len_dict:
|
||||
expected_len = viccan_socket_msg_len_dict[msg.command_id]
|
||||
if len(msg.data) != expected_len:
|
||||
self.get_logger().warning(
|
||||
f"Ignoring VicCAN message with id {msg.command_id} due to unexpected data length (expected {expected_len}, got {len(msg.data)})"
|
||||
)
|
||||
return
|
||||
|
||||
match msg.command_id:
|
||||
case 53: # REV SPARK MAX feedback
|
||||
motorId = round(msg.data[0])
|
||||
motor: RevMotorState | None = None
|
||||
match motorId:
|
||||
case 1:
|
||||
motor = self.arm_feedback_new.axis1_motor
|
||||
case 2:
|
||||
motor = self.arm_feedback_new.axis2_motor
|
||||
case 3:
|
||||
motor = self.arm_feedback_new.axis3_motor
|
||||
case 4:
|
||||
motor = self.arm_feedback_new.axis0_motor
|
||||
|
||||
if motor:
|
||||
motor.temperature = float(msg.data[1]) / 10.0
|
||||
motor.voltage = float(msg.data[2]) / 10.0
|
||||
motor.current = float(msg.data[3]) / 10.0
|
||||
motor.header.stamp = msg.header.stamp
|
||||
|
||||
self.arm_feedback_pub_.publish(self.arm_feedback_new)
|
||||
case 54: # Board voltages
|
||||
self.arm_feedback_new.socket_voltage.vbatt = float(msg.data[0]) / 100.0
|
||||
self.arm_feedback_new.socket_voltage.v12 = float(msg.data[1]) / 100.0
|
||||
self.arm_feedback_new.socket_voltage.v5 = float(msg.data[2]) / 100.0
|
||||
self.arm_feedback_new.socket_voltage.v3 = float(msg.data[3]) / 100.0
|
||||
case 55: # Arm joint positions
|
||||
angles = [angle / 10.0 for angle in msg.data] # VicCAN sends deg*10
|
||||
# Joint state publisher for URDF visualization
|
||||
self.saved_joint_state.position[0] = math.radians(angles[0]) # Axis 0
|
||||
self.saved_joint_state.position[1] = math.radians(angles[1]) # Axis 1
|
||||
self.saved_joint_state.position[2] = math.radians(
|
||||
-angles[2]
|
||||
) # Axis 2 (inverted)
|
||||
self.saved_joint_state.position[3] = math.radians(
|
||||
-angles[3]
|
||||
) # Axis 3 (inverted)
|
||||
# Wrist is handled by digit feedback
|
||||
self.saved_joint_state.header.stamp = msg.header.stamp
|
||||
self.joint_state_pub_.publish(self.saved_joint_state)
|
||||
case 58: # REV SPARK MAX position and velocity feedback
|
||||
motorId = round(msg.data[0])
|
||||
motor: RevMotorState | None = None
|
||||
match motorId:
|
||||
case 1:
|
||||
motor = self.arm_feedback_new.axis1_motor
|
||||
case 2:
|
||||
motor = self.arm_feedback_new.axis2_motor
|
||||
case 3:
|
||||
motor = self.arm_feedback_new.axis3_motor
|
||||
case 4:
|
||||
motor = self.arm_feedback_new.axis0_motor
|
||||
|
||||
if motor:
|
||||
motor.position = float(msg.data[1])
|
||||
motor.velocity = float(msg.data[2])
|
||||
motor.header.stamp = msg.header.stamp
|
||||
|
||||
self.arm_feedback_pub_.publish(self.arm_feedback_new)
|
||||
case 59: # Arm joint velocities
|
||||
velocities = [vel / 100.0 for vel in msg.data] # VicCAN sends deg/s*100
|
||||
self.saved_joint_state.velocity[0] = math.radians(
|
||||
velocities[0]
|
||||
) # Axis 0
|
||||
self.saved_joint_state.velocity[1] = math.radians(
|
||||
velocities[1]
|
||||
) # Axis 1
|
||||
self.saved_joint_state.velocity[2] = math.radians(
|
||||
-velocities[2]
|
||||
) # Axis 2 (-)
|
||||
self.saved_joint_state.velocity[3] = math.radians(
|
||||
-velocities[3]
|
||||
) # Axis 3 (-)
|
||||
# Wrist is handled by digit feedback
|
||||
self.saved_joint_state.header.stamp = msg.header.stamp
|
||||
self.joint_state_pub_.publish(self.saved_joint_state)
|
||||
|
||||
def process_fromvic_digit(self, msg: VicCAN):
|
||||
if msg.mcu_name != "digit":
|
||||
return
|
||||
|
||||
# Check message len to prevent crashing on bad data
|
||||
if msg.command_id in viccan_digit_msg_len_dict:
|
||||
expected_len = viccan_digit_msg_len_dict[msg.command_id]
|
||||
if len(msg.data) != expected_len:
|
||||
self.get_logger().warning(
|
||||
f"Ignoring VicCAN message with id {msg.command_id} due to unexpected data length (expected {expected_len}, got {len(msg.data)})"
|
||||
)
|
||||
return
|
||||
|
||||
match msg.command_id:
|
||||
case 54: # Board voltages
|
||||
self.arm_feedback_new.digit_voltage.vbatt = float(msg.data[0]) / 100.0
|
||||
self.arm_feedback_new.digit_voltage.v12 = float(msg.data[1]) / 100.0
|
||||
self.arm_feedback_new.digit_voltage.v5 = float(msg.data[2]) / 100.0
|
||||
case 55: # Arm joint positions
|
||||
self.saved_joint_state.position[4] = math.radians(
|
||||
msg.data[0]
|
||||
) # Wrist roll
|
||||
self.saved_joint_state.position[5] = math.radians(
|
||||
msg.data[1]
|
||||
) # Wrist yaw
|
||||
|
||||
def publish_feedback(self):
|
||||
self.socket_pub.publish(self.arm_feedback)
|
||||
self.digit_pub.publish(self.digit_feedback)
|
||||
@@ -263,16 +348,6 @@ class SerialRelay(Node):
|
||||
self.arm_feedback.axis1_angle = angles[1]
|
||||
self.arm_feedback.axis2_angle = angles[2]
|
||||
self.arm_feedback.axis3_angle = angles[3]
|
||||
|
||||
# Joint state publisher for URDF visualization
|
||||
self.joint_state.position[0] = math.radians(angles[0]) # Axis 0
|
||||
self.joint_state.position[1] = math.radians(angles[1]) # Axis 1
|
||||
self.joint_state.position[2] = math.radians(-angles[2]) # Axis 2 (inverted)
|
||||
self.joint_state.position[3] = math.radians(-angles[3]) # Axis 3 (inverted)
|
||||
# Wrist is handled by digit feedback
|
||||
self.joint_state.header.stamp = self.get_clock().now().to_msg()
|
||||
self.joint_state_pub.publish(self.joint_state)
|
||||
|
||||
else:
|
||||
self.get_logger().info("Invalid angle feedback input format")
|
||||
|
||||
@@ -313,33 +388,13 @@ class SerialRelay(Node):
|
||||
self.arm_feedback.axis0_voltage = voltage
|
||||
self.arm_feedback.axis0_current = current
|
||||
|
||||
@staticmethod
|
||||
def list_serial_ports():
|
||||
return glob.glob("/dev/ttyUSB*") + glob.glob("/dev/ttyACM*")
|
||||
# return glob.glob("/dev/tty[A-Za-z]*")
|
||||
|
||||
def cleanup(self):
|
||||
print("Cleaning up...")
|
||||
try:
|
||||
if self.ser.is_open:
|
||||
self.ser.close()
|
||||
except Exception as e:
|
||||
exit(0)
|
||||
|
||||
|
||||
def myexcepthook(type, value, tb):
|
||||
print("Uncaught exception:", type, value)
|
||||
if serial_pub:
|
||||
serial_pub.cleanup()
|
||||
|
||||
|
||||
def main(args=None):
|
||||
rclpy.init(args=args)
|
||||
sys.excepthook = myexcepthook
|
||||
|
||||
global serial_pub
|
||||
serial_pub = SerialRelay()
|
||||
serial_pub.run()
|
||||
arm_node = ArmNode()
|
||||
arm_node.run()
|
||||
rclpy.try_shutdown()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@@ -16,8 +16,10 @@ import pwd
|
||||
import grp
|
||||
from math import copysign
|
||||
|
||||
from std_srvs.srv import Trigger
|
||||
from std_msgs.msg import String
|
||||
from geometry_msgs.msg import Twist
|
||||
from geometry_msgs.msg import Twist, TwistStamped
|
||||
from control_msgs.msg import JointJog
|
||||
from astra_msgs.msg import CoreControl, ArmManual, BioControl
|
||||
from astra_msgs.msg import CoreCtrlState
|
||||
|
||||
@@ -45,8 +47,17 @@ control_qos = qos.QoSProfile(
|
||||
liveliness_lease_duration=Duration(seconds=5),
|
||||
)
|
||||
|
||||
arm_ik_qos = qos.QoSProfile(
|
||||
history=qos.QoSHistoryPolicy.KEEP_LAST,
|
||||
depth=1,
|
||||
reliability=qos.QoSReliabilityPolicy.BEST_EFFORT,
|
||||
durability=qos.QoSDurabilityPolicy.VOLATILE,
|
||||
)
|
||||
|
||||
CORE_MODE = "twist" # "twist" or "duty"
|
||||
|
||||
STICK_DEADZONE = float(os.getenv("STICK_DEADZONE", "0.05"))
|
||||
|
||||
|
||||
class Headless(Node):
|
||||
def __init__(self):
|
||||
@@ -105,10 +116,16 @@ class Headless(Node):
|
||||
break
|
||||
id += 1
|
||||
|
||||
self.create_timer(0.15, self.send_controls)
|
||||
self.create_timer(0.1, self.send_controls)
|
||||
|
||||
self.core_publisher = self.create_publisher(CoreControl, "/core/control", 2)
|
||||
self.arm_publisher = self.create_publisher(ArmManual, "/arm/control/manual", 2)
|
||||
self.arm_ik_twist_publisher = self.create_publisher(
|
||||
TwistStamped, "/servo_node/delta_twist_cmds", arm_ik_qos
|
||||
)
|
||||
self.arm_ik_jointjog_publisher = self.create_publisher(
|
||||
JointJog, "/servo_node/delta_joint_cmds", arm_ik_qos
|
||||
)
|
||||
self.bio_publisher = self.create_publisher(BioControl, "/bio/control", 2)
|
||||
|
||||
self.core_twist_pub_ = self.create_publisher(
|
||||
@@ -118,6 +135,41 @@ class Headless(Node):
|
||||
CoreCtrlState, "/core/control/state", qos_profile=control_qos
|
||||
)
|
||||
|
||||
self.declare_parameter("arm_mode", "manual")
|
||||
self.arm_mode = self.get_parameter("arm_mode").value
|
||||
|
||||
self.declare_parameter("arm_manual_scheme", "old")
|
||||
self.arm_manual_scheme = self.get_parameter("arm_manual_scheme").value
|
||||
|
||||
# Check parameter validity
|
||||
if self.arm_mode not in ["manual", "ik"]:
|
||||
self.get_logger().warn(
|
||||
f"Invalid value '{self.arm_mode}' for arm_mode parameter. Defaulting to 'manual' (per-axis control)."
|
||||
)
|
||||
if self.arm_manual_scheme not in ["old", "new"]:
|
||||
self.get_logger().warn(
|
||||
f"Invalid value '{self.arm_manual_scheme}' for arm_manual_scheme parameter. Defaulting to 'old' ('24 and '25 controls)."
|
||||
)
|
||||
|
||||
# If using IK control, we have to "start" the servo node to enable it to accept commands
|
||||
self.servo_start_client = None
|
||||
if self.arm_mode == "ik":
|
||||
self.get_logger().info("Starting servo node for IK control...")
|
||||
self.servo_start_client = self.create_client(
|
||||
Trigger, "/servo_node/start_servo"
|
||||
)
|
||||
timeout_counter = 0
|
||||
while not self.servo_start_client.wait_for_service(timeout_sec=1.0):
|
||||
self.get_logger().info("Waiting for servo_node/start_servo service...")
|
||||
timeout_counter += 1
|
||||
if timeout_counter >= 10:
|
||||
self.get_logger().error(
|
||||
"Servo's start service not available. IK control will not work."
|
||||
)
|
||||
break
|
||||
if self.servo_start_client.service_is_ready():
|
||||
self.servo_start_client.call_async(Trigger.Request())
|
||||
|
||||
self.ctrl_mode = "core" # Start in core mode
|
||||
self.core_brake_mode = False
|
||||
self.core_max_duty = 0.5 # Default max duty cycle (walking speed)
|
||||
@@ -125,18 +177,6 @@ class Headless(Node):
|
||||
# Rumble when node is ready (returns False if rumble not supported)
|
||||
self.gamepad.rumble(0.7, 0.8, 150)
|
||||
|
||||
def run(self):
|
||||
# This thread makes all the update processes run in the background
|
||||
thread = threading.Thread(target=rclpy.spin, args={self}, daemon=True)
|
||||
thread.start()
|
||||
|
||||
try:
|
||||
while rclpy.ok():
|
||||
self.send_controls()
|
||||
time.sleep(0.1) # Small delay to avoid CPU hogging
|
||||
except KeyboardInterrupt:
|
||||
sys.exit(0)
|
||||
|
||||
def send_controls(self):
|
||||
"""Read the gamepad state and publish control messages"""
|
||||
for event in pygame.event.get():
|
||||
@@ -166,6 +206,9 @@ class Headless(Node):
|
||||
new_ctrl_mode = "core"
|
||||
|
||||
if new_ctrl_mode != self.ctrl_mode:
|
||||
self.core_publisher.publish(CORE_STOP_MSG)
|
||||
self.arm_publisher.publish(ARM_STOP_MSG)
|
||||
self.bio_publisher.publish(BIO_STOP_MSG)
|
||||
self.gamepad.rumble(0.6, 0.7, 75)
|
||||
self.ctrl_mode = new_ctrl_mode
|
||||
self.get_logger().info(f"Switched to {self.ctrl_mode} control mode")
|
||||
@@ -194,8 +237,6 @@ class Headless(Node):
|
||||
self.get_logger().info(f"[Ctrl] {output}")
|
||||
|
||||
self.core_publisher.publish(input)
|
||||
self.arm_publisher.publish(ARM_STOP_MSG)
|
||||
# self.bio_publisher.publish(BIO_STOP_MSG)
|
||||
|
||||
elif self.ctrl_mode == "core" and CORE_MODE == "twist":
|
||||
input = Twist()
|
||||
@@ -215,8 +256,6 @@ class Headless(Node):
|
||||
|
||||
# Publish
|
||||
self.core_twist_pub_.publish(input)
|
||||
self.arm_publisher.publish(ARM_STOP_MSG)
|
||||
# self.bio_publisher.publish(BIO_STOP_MSG)
|
||||
self.get_logger().info(
|
||||
f"[Core Ctrl] Linear: {round(input.linear.x, 2)}, Angular: {round(input.angular.z, 2)}"
|
||||
)
|
||||
@@ -247,7 +286,7 @@ class Headless(Node):
|
||||
)
|
||||
|
||||
# ARM and BIO
|
||||
if self.ctrl_mode == "arm":
|
||||
if self.ctrl_mode == "arm" and self.arm_mode == "manual":
|
||||
arm_input = ArmManual()
|
||||
|
||||
# Collect controller state
|
||||
@@ -257,50 +296,114 @@ class Headless(Node):
|
||||
right_stick_x = deadzone(self.gamepad.get_axis(3))
|
||||
right_stick_y = deadzone(self.gamepad.get_axis(4))
|
||||
right_trigger = deadzone(self.gamepad.get_axis(5))
|
||||
button_a = self.gamepad.get_button(0)
|
||||
button_b = self.gamepad.get_button(1)
|
||||
button_x = self.gamepad.get_button(2)
|
||||
button_y = self.gamepad.get_button(3)
|
||||
left_bumper = self.gamepad.get_button(4)
|
||||
right_bumper = self.gamepad.get_button(5)
|
||||
dpad_input = self.gamepad.get_hat(0)
|
||||
|
||||
# EF Grippers
|
||||
if left_trigger > 0 and right_trigger > 0:
|
||||
arm_input.gripper = 0
|
||||
elif left_trigger > 0:
|
||||
arm_input.gripper = -1
|
||||
elif right_trigger > 0:
|
||||
arm_input.gripper = 1
|
||||
if self.arm_manual_scheme == "old":
|
||||
# EF Grippers
|
||||
if left_trigger > 0 and right_trigger > 0:
|
||||
arm_input.gripper = 0
|
||||
elif left_trigger > 0:
|
||||
arm_input.gripper = -1
|
||||
elif right_trigger > 0:
|
||||
arm_input.gripper = 1
|
||||
|
||||
# Axis 0
|
||||
if dpad_input[0] == 1:
|
||||
arm_input.axis0 = 1
|
||||
elif dpad_input[0] == -1:
|
||||
arm_input.axis0 = -1
|
||||
# Axis 0
|
||||
if dpad_input[0] == 1:
|
||||
arm_input.axis0 = 1
|
||||
elif dpad_input[0] == -1:
|
||||
arm_input.axis0 = -1
|
||||
|
||||
if right_bumper: # Control end effector
|
||||
if right_bumper: # Control end effector
|
||||
|
||||
# Effector yaw
|
||||
if left_stick_x > 0:
|
||||
arm_input.effector_yaw = 1
|
||||
elif left_stick_x < 0:
|
||||
arm_input.effector_yaw = -1
|
||||
# Effector yaw
|
||||
if left_stick_x > 0:
|
||||
arm_input.effector_yaw = 1
|
||||
elif left_stick_x < 0:
|
||||
arm_input.effector_yaw = -1
|
||||
|
||||
# Effector roll
|
||||
if right_stick_x > 0:
|
||||
arm_input.effector_roll = 1
|
||||
elif right_stick_x < 0:
|
||||
# Effector roll
|
||||
if right_stick_x > 0:
|
||||
arm_input.effector_roll = 1
|
||||
elif right_stick_x < 0:
|
||||
arm_input.effector_roll = -1
|
||||
|
||||
else: # Control arm axis
|
||||
|
||||
# Axis 1
|
||||
if abs(left_stick_x) > 0.15:
|
||||
arm_input.axis1 = round(left_stick_x)
|
||||
|
||||
# Axis 2
|
||||
if abs(left_stick_y) > 0.15:
|
||||
arm_input.axis2 = -1 * round(left_stick_y)
|
||||
|
||||
# Axis 3
|
||||
if abs(right_stick_y) > 0.15:
|
||||
arm_input.axis3 = -1 * round(right_stick_y)
|
||||
|
||||
if self.arm_manual_scheme == "new":
|
||||
# Right stick: EF yaw and axis 3
|
||||
# Left stick: axis 1 and 2
|
||||
# D-pad: axis 0 and _
|
||||
# Triggers: EF grippers
|
||||
# Bumpers: EF roll
|
||||
# A: brake
|
||||
# B: _
|
||||
# X: _
|
||||
# Y: linear actuator
|
||||
|
||||
ARM_THRESHOLD = 0.2
|
||||
|
||||
# Right stick: EF yaw and axis 3
|
||||
arm_input.effector_yaw = (
|
||||
0 if abs(right_stick_x) < ARM_THRESHOLD else int(copysign(1, right_stick_x))
|
||||
)
|
||||
arm_input.axis3 = (
|
||||
0 if abs(right_stick_y) < ARM_THRESHOLD else int(-1 * copysign(1, right_stick_y))
|
||||
)
|
||||
|
||||
# Left stick: axis 1 and 2
|
||||
arm_input.axis1 = (
|
||||
0 if abs(left_stick_x) < ARM_THRESHOLD else int(copysign(1, left_stick_x))
|
||||
)
|
||||
arm_input.axis2 = (
|
||||
0 if abs(left_stick_y) < ARM_THRESHOLD else int(-1 * copysign(1, left_stick_y))
|
||||
)
|
||||
|
||||
# D-pad: axis 0 and _
|
||||
arm_input.axis0 = (
|
||||
0 if dpad_input[0] == 0 else int(copysign(1, dpad_input[0]))
|
||||
)
|
||||
|
||||
# Triggers: EF Grippers
|
||||
if left_trigger > 0 and right_trigger > 0:
|
||||
arm_input.gripper = 0
|
||||
elif left_trigger > 0:
|
||||
arm_input.gripper = -1
|
||||
elif right_trigger > 0:
|
||||
arm_input.gripper = 1
|
||||
|
||||
# Bumpers: EF roll
|
||||
if left_bumper > 0 and right_bumper > 0:
|
||||
arm_input.effector_roll = 0
|
||||
elif left_bumper > 0:
|
||||
arm_input.effector_roll = -1
|
||||
elif right_bumper > 0:
|
||||
arm_input.effector_roll = 1
|
||||
|
||||
else: # Control arm axis
|
||||
# A: brake
|
||||
if button_a:
|
||||
arm_input.brake = True
|
||||
|
||||
# Axis 1
|
||||
if abs(left_stick_x) > 0.15:
|
||||
arm_input.axis1 = round(left_stick_x)
|
||||
|
||||
# Axis 2
|
||||
if abs(left_stick_y) > 0.15:
|
||||
arm_input.axis2 = -1 * round(left_stick_y)
|
||||
|
||||
# Axis 3
|
||||
if abs(right_stick_y) > 0.15:
|
||||
arm_input.axis3 = -1 * round(right_stick_y)
|
||||
# Y: linear actuator
|
||||
if button_y:
|
||||
arm_input.linear_actuator = 1
|
||||
|
||||
# BIO
|
||||
bio_input = BioControl(
|
||||
@@ -314,12 +417,75 @@ class Headless(Node):
|
||||
30 * (right_trigger - left_trigger)
|
||||
) # Max duty cycle 30%
|
||||
|
||||
self.core_publisher.publish(CORE_STOP_MSG)
|
||||
self.arm_publisher.publish(arm_input)
|
||||
# self.bio_publisher.publish(bio_input)
|
||||
|
||||
if self.ctrl_mode == "arm" and self.arm_mode == "ik":
|
||||
arm_twist = TwistStamped()
|
||||
arm_twist.header.frame_id = "base_link"
|
||||
arm_twist.header.stamp = self.get_clock().now().to_msg()
|
||||
arm_jointjog = JointJog()
|
||||
arm_jointjog.header.frame_id = "base_link"
|
||||
arm_jointjog.header.stamp = self.get_clock().now().to_msg()
|
||||
|
||||
# Collect controller state
|
||||
left_stick_x = deadzone(self.gamepad.get_axis(0))
|
||||
left_stick_y = deadzone(self.gamepad.get_axis(1))
|
||||
left_trigger = deadzone(self.gamepad.get_axis(2))
|
||||
right_stick_x = deadzone(self.gamepad.get_axis(3))
|
||||
right_stick_y = deadzone(self.gamepad.get_axis(4))
|
||||
right_trigger = deadzone(self.gamepad.get_axis(5))
|
||||
button_a = self.gamepad.get_button(0)
|
||||
button_b = self.gamepad.get_button(1)
|
||||
button_x = self.gamepad.get_button(2)
|
||||
button_y = self.gamepad.get_button(3)
|
||||
left_bumper = self.gamepad.get_button(4)
|
||||
right_bumper = self.gamepad.get_button(5)
|
||||
dpad_input = self.gamepad.get_hat(0)
|
||||
|
||||
# Right stick: linear y and linear x
|
||||
# Left stick: angular z and linear z
|
||||
# D-pad: angular y and _
|
||||
# Triggers: EF grippers
|
||||
# Bumpers: angular x
|
||||
# A: brake
|
||||
# B: IK mode
|
||||
# X: manual mode
|
||||
# Y: linear actuator
|
||||
|
||||
# Right stick: linear y and linear x
|
||||
arm_twist.twist.linear.y = float(right_stick_x)
|
||||
arm_twist.twist.linear.x = float(right_stick_y)
|
||||
|
||||
# Left stick: angular z and linear z
|
||||
arm_twist.twist.angular.z = float(-1 * left_stick_x)
|
||||
arm_twist.twist.linear.z = float(-1 * left_stick_y)
|
||||
# D-pad: angular y and _
|
||||
arm_twist.twist.angular.y = (
|
||||
float(0)
|
||||
if dpad_input[0] == 0
|
||||
else float(-1 * copysign(0.75, dpad_input[0]))
|
||||
)
|
||||
|
||||
# Triggers: EF Grippers
|
||||
if left_trigger > 0 or right_trigger > 0:
|
||||
arm_jointjog.joint_names.append(
|
||||
"Gripper_Slider_Left" # TODO: Update joint name
|
||||
)
|
||||
arm_jointjog.velocities.append(float(right_trigger - left_trigger))
|
||||
|
||||
# Bumpers: angular x
|
||||
if left_bumper > 0 and right_bumper > 0:
|
||||
arm_twist.twist.angular.x = float(0)
|
||||
elif left_bumper > 0:
|
||||
arm_twist.twist.angular.x = float(1)
|
||||
elif right_bumper > 0:
|
||||
arm_twist.twist.angular.x = float(-1)
|
||||
|
||||
self.arm_ik_twist_publisher.publish(arm_twist)
|
||||
# self.arm_ik_jointjog_publisher.publish(arm_jointjog) # TODO: Figure this shit out
|
||||
|
||||
|
||||
def deadzone(value: float, threshold=0.05) -> float:
|
||||
def deadzone(value: float, threshold=STICK_DEADZONE) -> float:
|
||||
"""Apply a deadzone to a joystick input so the motors don't sound angry"""
|
||||
if abs(value) < threshold:
|
||||
return 0
|
||||
@@ -353,7 +519,7 @@ def main(args=None):
|
||||
except (KeyboardInterrupt, ExternalShutdownException):
|
||||
print("Caught shutdown signal. Exiting...")
|
||||
finally:
|
||||
rclpy.shutdown()
|
||||
rclpy.try_shutdown()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@@ -26,7 +26,7 @@ class LatencyTester : public rclcpp::Node
|
||||
{
|
||||
public:
|
||||
LatencyTester()
|
||||
: Node("latency_tester"), count_(0), target_mcu_("core")
|
||||
: Node("latency_tester"), count_(0)
|
||||
{
|
||||
publisher_ = this->create_publisher<std_msgs::msg::String>("/anchor/relay", 10);
|
||||
timer_ = this->create_wall_timer(
|
||||
@@ -35,6 +35,8 @@ public:
|
||||
"/anchor/debug",
|
||||
10,
|
||||
std::bind(&LatencyTester::response_callback, this, std::placeholders::_1));
|
||||
|
||||
target_mcu_ = this->declare_parameter<std::string>("target_mcu", "core");
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
@@ -107,23 +107,23 @@ bool convertJoyToCmd(const std::vector<float>& axes, const std::vector<int>& but
|
||||
std::unique_ptr<geometry_msgs::msg::TwistStamped>& twist,
|
||||
std::unique_ptr<control_msgs::msg::JointJog>& joint)
|
||||
{
|
||||
// // Give joint jogging priority because it is only buttons
|
||||
// // If any joint jog command is requested, we are only publishing joint commands
|
||||
// if (buttons[A] || buttons[B] || buttons[X] || buttons[Y] || axes[D_PAD_X] || axes[D_PAD_Y])
|
||||
// {
|
||||
// // Map the D_PAD to the proximal joints
|
||||
// joint->joint_names.push_back("panda_joint1");
|
||||
// joint->velocities.push_back(axes[D_PAD_X]);
|
||||
// joint->joint_names.push_back("panda_joint2");
|
||||
// joint->velocities.push_back(axes[D_PAD_Y]);
|
||||
// Give joint jogging priority because it is only buttons
|
||||
// If any joint jog command is requested, we are only publishing joint commands
|
||||
if (0)
|
||||
{
|
||||
// Map the D_PAD to the proximal joints
|
||||
joint->joint_names.push_back("panda_joint1");
|
||||
joint->velocities.push_back(axes[D_PAD_X]);
|
||||
joint->joint_names.push_back("panda_joint2");
|
||||
joint->velocities.push_back(axes[D_PAD_Y]);
|
||||
|
||||
// // Map the diamond to the distal joints
|
||||
// joint->joint_names.push_back("panda_joint7");
|
||||
// joint->velocities.push_back(buttons[B] - buttons[X]);
|
||||
// joint->joint_names.push_back("panda_joint6");
|
||||
// joint->velocities.push_back(buttons[Y] - buttons[A]);
|
||||
// return false;
|
||||
// }
|
||||
// Map the diamond to the distal joints
|
||||
joint->joint_names.push_back("panda_joint7");
|
||||
joint->velocities.push_back(buttons[B] - buttons[X]);
|
||||
joint->joint_names.push_back("panda_joint6");
|
||||
joint->velocities.push_back(buttons[Y] - buttons[A]);
|
||||
return false;
|
||||
}
|
||||
|
||||
// The bread and butter: map buttons to twist commands
|
||||
twist->twist.linear.z = axes[RIGHT_STICK_Y];
|
||||
@@ -243,13 +243,13 @@ public:
|
||||
twist_msg->header.stamp = this->now();
|
||||
twist_pub_->publish(std::move(twist_msg));
|
||||
}
|
||||
// else
|
||||
// {
|
||||
// // publish the JointJog
|
||||
// joint_msg->header.stamp = this->now();
|
||||
// joint_msg->header.frame_id = "panda_link3";
|
||||
// joint_pub_->publish(std::move(joint_msg));
|
||||
// }
|
||||
else
|
||||
{
|
||||
// publish the JointJog
|
||||
joint_msg->header.stamp = this->now();
|
||||
joint_msg->header.frame_id = "panda_link3";
|
||||
joint_pub_->publish(std::move(joint_msg));
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||